SHORT COMMUNICATION

BIOSYNTHESIS OF URSOLIC ACID-2-14C

H. J. NICHOLAS

Institute of Medical Education and Research and Department of Biochemistry, St. Louis University School of Medicine, St. Louis, Missouri, U.S.A.

(Received 6 July 1966)

Abstract—Ursolic acid-14C was prepared by administration of mevalonic acid-2-14C, sodium acetate-1- and -2-14C, sodium formate-14C and L-methionine-methyl-14C respectively to cut sections of Salvia officinalis. Only mevalonic acid-2-14C was incorporated efficiently into the acidic triterpene. Each of the ursolic acid preparations was subjected to the Schmidt reaction. The C-28 of ursolic acid acquired a small amount of label from formate-14C, but not from any other of the precursors. The reason for this is not known.

INTRODUCTION

As an approach to the chemical degradation of a triterpene labeled biosynthetically with ¹⁴C, ursolic acid-¹⁴C was prepared from several labeled precursors. This was performed by administering the precursors to *S. officinalis* cut stems since the plant is a convenient source of ursolic acid. The labeled ursolic acids were then subjected to the Schmidt reaction, ¹ which has been used successfully in ascertaining that the methyl group of acetic acid is the source of the carboxyl group in eburicoic acid.²

RESULTS AND DISCUSSION

The per cent incorporation of ¹⁴C from the various labeled precursors into ursolic acid-¹⁴C is shown in Table 1. Except for mevalonic acid-²⁻¹⁴C, the precursors were uniformly incorporated rather inefficiently by this method.

TABLE 1. INCORPORATION OF 14C-LABELLED PRECURSORS INTO URSOLIC ACID OF S. officinalis

¹⁴ C-Precursor	Amount (μg)	Wet weight of plant (g)	Ursolic acid 14C yield (mg)	Total ¹⁴ C incorporation, c.p.m.×10 ⁻⁴	Per cent incorporation of radioactivity	
Mevalonic acid-2-14C	20	158	679	100.0	21.02	
Sodium acetate-1-14C	400	842	6210	23.6	0.22	
Sodium acetate-2-14C	400	878	4500	6.5	0.06	
Sodium formate-14C	400	314	760	2.6	0.02	
Sodium formate-14C	2000	87	20*	6.2	0.01	
L-Methionine-methyl-14C	100	61	28*	5⋅5	0.21	

^{*} Diluted with 100 mg of non-radioactive ursolic acid prior to further purification.

¹ H. Wolff, In Organic Reactions, Vol. 3, p. 307. John Wiley, New York (1946).

² W. G. DAUBEN, Y. BAN and J. H. RICHARDS, J. Am. Chem. Soc. 79, 968 (1957).

When each of the ursolic acid-14C preparations were subjected to the Schmidt reaction the results shown in Table 2 were obtained. It will be noted that only ursolic acid-14C prepared from sodium formate-14C gave rise to radioactive carbon dioxide. Of the precursors utilized, only sodium acetate-2-14C should label the C-28 methyl group of the ursane nucleus, or the carboxyl resulting from biological oxidation of this group. The observation, therefore, has no obvious explanation at the present and will bear further investigation.

Table 2. Recovery of ¹⁴ CO ₂ from ursolic acid- ¹⁴ C prepared biosynthetically from various
¹⁴ C-precursors and subjected to the schmidt reaction

¹⁴ C-Precursor	Ursolic acid-14C subjected to reaction			BaCO ₃		Total ¹⁴ C in BaCO ₃		
	Sp. act. c.p.m./mg C	(mg)	Total c.p.m.× 10-3	Found mg	Per cent recovery		Calc.	Yield %
Mevalonic acid-2-14C	2160	500	849	208	95	0	Marine.	0
Sodium acetate-1-14C	1285	500	505	219	100	0	-	0
Sodium acetate-2-14C	682	500	268	141	65	0	-	0
Sodium formate-14C	107	355	30	66	44	260	1000	26*
Sodium formate-14C	296	82	19	40	92	620	633	98
L-Methionine-methyl-C14	474	59	22	25	100	0	-	0

^{* 59%} if corrected to 100% recovery of BaCO₃.

EXPERIMENTAL

The method of administering the ¹⁴C-labeled precursors has been previously described.^{3–5} Sodium formate-¹⁴C was obtained from Volk Radiochemicals, Skokie, Illinois. All other labeled precursors were purchased from the New England Nuclear Corp., Boston, Massachusetts. After absorption of the ¹⁴C-precursor solutions the plant sections were kept in distilled H₂O for a week, then allowed to dry an additional week. The plant tissue was then extracted exhaustively with ethanol and the extracts were distilled to dryness. The residues were saponified, "crude acidic triterpene" fractions were isolated and chromatographed on deactivated alumina as described previously.³ Ursolic acid was isolated from the 5% ethanol (in benzene) eluates, acetylated and crystallized to a constant m.p. of 283–286°. Saponification and several crystallizations from aqueous ethanol gave ursolic acid, m.p. 285–287°. The Schmidt reaction was then performed as described by Dauben and Richards.² The evolved CO₂ was collected as BaCO₃. Samples to be counted for ¹⁴C were plated as infinitely thin layers and counted in a windowless gas-flow counter. Barium carbonate samples were corrected to infinitely thick layers by means of a standard Ba¹⁴CO₃ curve prepared with the particular instrument used.

Acknowledgements—The assistance of Sharon Pendleton is gratefully acknowledged. This research was supported by a grant from the United States Public Health Service.

³ H. J. NICHOLAS, J. Biol. Chem. 237, 1476 (1962).

⁴ H. J. NICHOLAS, J. Biol. Chem. 237, 1481 (1962).

⁵ H. J. NICHOLAS, J. Biol. Chem. 237, 1485 (1962).